If it's not what You are looking for type in the equation solver your own equation and let us solve it.
a^2+(6a)^2=7^2
We move all terms to the left:
a^2+(6a)^2-(7^2)=0
We add all the numbers together, and all the variables
7a^2-49=0
a = 7; b = 0; c = -49;
Δ = b2-4ac
Δ = 02-4·7·(-49)
Δ = 1372
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1372}=\sqrt{196*7}=\sqrt{196}*\sqrt{7}=14\sqrt{7}$$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-14\sqrt{7}}{2*7}=\frac{0-14\sqrt{7}}{14} =-\frac{14\sqrt{7}}{14} =-\sqrt{7} $$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+14\sqrt{7}}{2*7}=\frac{0+14\sqrt{7}}{14} =\frac{14\sqrt{7}}{14} =\sqrt{7} $
| 5p=-13 | | 6-2(3-2x)=-4(3x) | | 6(v+3=72 | | 4h=21 | | -12=3-2-3k | | -4g=24 | | 96c=120 | | -2x+7.5=27 | | 10^-4x-18=10^-8x-14 | | 2n/2=4/2 | | 4n-125=300 | | 3.75-3x=6 | | (t+4)^(2)-12(t+4)+35=0 | | 2a+9/3=52 | | 44(55x−1010)=2020(−1010) | | 6^(3x-1)=36 | | 6^3x-1=36 | | -16x^2+64x+48=0 | | 3(y+5)=2y+15+yB | | F(4)=x^2+2 | | 2−6x=5−5(x−1 | | 3t+18=96 | | F(-4)=2x+1 | | F(3)=6x+6 | | a/15+1/5=3/5 | | 64=(2w-10)w | | F(-2)=2x+2 | | 3a+18+-5a=2(a+7)+-12 | | 35=x-107/7 | | 1/4(d+3)=2-d | | 4x+x=1550 | | 31x+10=12 |